Week 8

Rings of polynomials

Definition. Let R be a nonzero commutative ring.
A polynomial with coefficients in R (in one-variable) is a formal sum

flx) = Z a;x’

with a; € R such that a; = 0 for all but finitely many 7’s.

If a; # 0 for some 4, then the largest such i is called the degree of f(z),
denoted by deg f(x).

We denote by R[z] the set of all polynomials with coefficients in R.

Given . .
flz) = Zaixi,g(:v) = Zbixi € R[z],
i=0 i=0

we define the addition and multiplication as follows (as usual):

f(x) +g(x) = Z(az’ + b;)a’,
algle) = (Z b)

Proposition 8.0.1. With addition and multiplication thus defined, R|x] is a com-
mutative ring.

Proof. Exercise. [

Remark. A polynomial f(z) defines a function f : R — Rby a — f(a). But
f(z) may not be determined by f : R — R. For example, the polynomials

flx)=1+2+2% g(x) =1 € Zsy[x]

define the same (constant) function from Z to itself.
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Integral domains and fields
Definition. A nonzero commutative ring 1 is called an integral domain if the
product of two nonzero elements is always nonzero.

Definition. A nonzero element r in aring 1 is called a zero divisor if there exists
nonzero s € R such that rs = 0.

So a nonzero commutative ring R is an integral domain if and only if it has no
zero divisors.

Example 8.0.2. 1. Z,Q, R, C are all integral domains, so are Z[z], Q[x], R[x],
C|x]. (More generally, if R is an integral domain, so is R|[x].)

2. Since 2,3 # 0 mod 6, and 2-3 = 6 = 0 mod 6, the ring Zg is not an
integral domain.

3. Consider R = C[—1,1], the ring of all continuous functions on [—1, 1],
equipped with the usual operations of addition and multiplication for func-

tions. Let:
—x, x <0, 0, =<0,
f= , 9=
0, x > 0. x, x>0.
Then f and g are nonzero elements of R, but fg = 0. So R is not an integral
domain.

Proposition 8.0.3. A commutative ring R is an integral domain if and only if the
cancellation law holds for multiplication, i.e. whenever ca = cb and ¢ # 0, we
have a = b.

Proof. Suppose R is an integral domain. If ca = cb, then by distributive laws,
c¢(a—b) = c(a+ —b) = 0. Since R is an integral domain, we have either ¢ = 0 or
a—b=0. So, if ¢ # 0, we must have a = b.

Conversely, suppose cancellation law holds. Suppose there are nonzero a, b €
R such that ab = 0. By a previous result we know that 0 = a0. So, ab = a0,
which by the cancellation law implies that b = 0, a contradiction. [l

Definition. Let 12 be a ring. We say that an element ¢ € R is a unit if it has a

multiplicative inverse, i.e. there is an element ¢! € R such thataa™! = a 'a =

1.
Example 8.0.4. The only units of Z are +1.

Example 8.0.5. Let R be the ring of all real valued functions on R. Then, any
function f € R satisfying f(z) # 0, Vz, is a unit.
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Example 8.0.6. Let R be the ring of all continuous real valued functions on R,
then f € R is aunit if and only if it is either strictly positive or strictly negative.

Proposition 8.0.7. The only units of Q|x| are nonzero constants.

Proof. Given any f € Q[z] such that deg f > 0, for all nonzero g € Q[x] we
have
deg fg > deg f > 0 = deg 1;

hence, fg # 1. If g = 0, then fg = 0 # 1. So, f has no multiplicative inverse.

If f is a nonzero constant, then f~* = 1 is a constant polynomial in Q[z], and

f
f <%> = (%) f = 1. So, fis a unit.
Finally, if f = 0, then fg = 0 # 1 for all g € Q[x], so the zero polynomial
has no multiplicative inverse. [

Definition. A field is a commutative ring, with 1 # 0, in which every nonzero
element is a unit.

In other words, a nonzero commutative ring £’ is a field if and only if every
nonzero element 7 € F has a multiplicative inverse r !, i.e. 77! p =1,

Example 8.0.8. 1. Q, R, C are fields, but Z is not a field.

:7”7

2. The polynomial rings Q[z], R[z], C[z] are not fields.

Note that if every nonzero element of a commutative ring has a multiplicative
inverse, then that ring is an integral domain:

ca=cb = cleca=clch = a=0.
So we conclude that
Proposition 8.0.9. A field is an integral domain.
Proposition 8.0.10. Let k € Z,, \ {0}.
o Ifgcd(k,m) > 1, then k is a zero divisor.
o Ifgcd(k,m) =1, then k is a unit.

Proof. Letd := ged(k, m).

If d > 1, then m/d is a nonzero element in Z,,, and we have k -,, (m/d) =
(k/d) - m = 01in Z,,. So k is a zero divisor.

If d = 1, then there exist a, b € Z such that ak + bm = 1. But this means we
have ak = 1 in Z,,,. So k is a unit. O]
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Hence, the set of zero divisors in Z,, is precisely given by
{k € Zn \ {0} : gcd(k,m) > 1}
and the set of units in Z,, is precisely given by
7y = A{k € Zy, \ {0} : ged(k,m) = 1}.
In particular, we have the following
Corollary 8.0.11. Z,, is a field if and only if m is prime.
Notation. For p prime, we often denote the field Z, by F,,.

Proposition 8.0.12. Equipped with the usual operations of addition and multipli-
cations for real numbers, F = Q[v/2] := {a + b\/2|a,b € Q} is a field.

Proof. Observe that: (a+bv/2) 4 (c+dv/2) = (a+c)+ (b+d)v/2lies in F, and
(a+bv2)(c+ dv2) = (ac+2bd) + (ad + bec)y/2 € F. Hence, addition and mul-
tiplication for real numbers are well-defined operations on F'. As operations on
R, they are commutative, associative, and satisfy the distributive laws; therefore,
as F'is a subset of R, they also satisfy these properties as operations on F'.

It is clear that 0 and 1 are the additive and multiplicative identities of F'. Given
a+ b2 € F, where a,b € Q, it is clear that its additive inverse —a — b\/2 also
lies in F'. Hence, F' is a commutative ring.

To show that F'is a field, for every nonzero a + bv/2 in F, we need to find its
multiplicative inverse. As an element of the field R, the multiplicative inverse of
a+ by/2 is: .

a—+bhv/2
It remains to show that this number lies in F'. Observe that:
(a +bV2)(a — bV2) = a® — 2%

We claim that a? — 2b% # 0. Suppose a? — 2b* = 0, then either (i) a = b = 0, or
(ii) b # 0, v/2 = |a/b|. Since we have assumed that a + b/2 is nonzero, case (i)

cannot hold. But case (ii) also cannot hold because v/2 is know to be irrational.
Hence a? — 2b% # 0, and:

1 a b
g —_ 2
a+bv/2 a®—2b*  a?—2b? V2

which lies in F'. L]

(a+bv2)™" =

Proposition 8.0.13. All finite integral domains are fields.
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Proof. Let R be an integral domain with n elements, where n is finite. Write
R ={ay,ay,...,a,}. We want to show that for any nonzero element a # 0 in R,
there exists 7, 1 < ¢ < n, such that a; is the multiplicative inverse of a. Consider
the set S = {aay, aas, ..., aa,}. Since R is an integral domain, the cancellation
law holds. In particular, since a # 0, we have aa;, = aa; if and only if i = j.
The set S'is therefore a subset of R with n distinct elements, which implies that
S = R. In particular, 1 = aa; for some ¢. This a; is the multiplicative inverse of
a. ]

Field of Fractions (optional)

An integral domain fails to be a field precisely when there is a nonzero element
with no multiplicative inverse. The ring Z is such an example, for 2 € Z has no
multiplicative inverse. But any nonzero n € Z has a multiplicative inverse % in Q,
which is a field. So, a question one could ask is, can we “enlarge” a given integral
domain to a field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with 1 # 0). We consider the set:
R x R4y :={(a,b) : a,b € R,b # 0}. We define a relation = on R x R, as
follows:

(a,b) = (¢, d) if ad = be.

Lemma 8.0.14. The relation = is an equivalence relation.
In other words, the relation = is:
Reflexive: (a,b) = (a,b) forall (a,b) € R x R
Symmetric: If (a,b) = (¢, d), then (¢, d) = (a, b).
Transitive: If (a,b) = (¢,d) and (¢, d) = (e, f), then (a,b) = (e, f).
Proof. Exercise. [

In general, given an equivalence relation ~ on a set .S, the equivalent class of
an element a € S is the set of all elements in s € .S which are equivalent to a (i.e.
s~ a).

Notation: For notational convenience, to describe an equivalence class we
may pick any element s (called a representative) belonging to the class, and label
the class as [s]. Note that if s ~ ¢, then [s] = [t].
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Due to the properties (reflexive, symmetric, transitive), of an equivalence re-
lation, the equivalent classes form a partition of S. Namely, equivalent classes of
non-equivalent elements are disjoint:

[s]n[tl =@

if s 7 t; and the union of all equivalent classes is equal to S:

Ulsl =5

ses

Definition. Given an equivalence relation ~ on a set S, the quotient set S/ ~ is
the set of all equivalence classes of .S, with respect to ~.

We now return to our specific situation of R x R_,, with = defined as above.
We define addition + and multiplication - on 2 x R, as follows:

(a,b) + (¢,d) := (ad + be, bd)
(a,b) - (c,d) := (ac, bd)

Proposition 8.0.15. Suppose (a,b) = (a’, V') and (¢, d) = (¢, d’), then:
1. (a,b) + (¢,d) = (', V) + (¢, d).
2. (a,b) - (c,d) = («,V) - (c,d).

Proof. By definition, (a,b) + (¢,d) = (ad + be,bd), and (a’,0') + (¢, d') =
(a’d +b'd,b'd). Since by assumption ab’ = a’b and cd’ = ’d, we have:

(ad + be)b'd = adb'd' + beb'd = a'bdd + ¢'dbb’ = (a'd’ + b')bd,

hence, (a,b) + (¢, d) = (', V) + (¢, d').
For multiplication, by definition we have (a, b) - (¢, d) = (ac, bd) and (a’,b’) -
(d,d) = (ac,V'd). Since

act/d = al'cd = a'bd'd = a''bd,
we have (a,b) - (¢,d) = (d',V) - (¢, d). O

Let:
Frac(R) := (R x Ry)/ =,

and define + and - on Frac(R) as follows:

[(a,b)] + [(c, d)] = [(ad + be, bd))]
[(a, )] - [(c; d)] = [(ac, bd)]
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Corollary 8.0.16. + and - thus defined are well-defined binary operations on
Frac(R).

Namely, we get the same output in Frac(R) regardless of the choice of repre-
sentatives of the equivalence classes.

Proposition 8.0.17. The set Frac(R), equipped with + and - defined as above,
forms a field, with additive identity 0 = [(0,1)] and multiplicative identity 1 =
[(1,1)]. The multiplicative inverse of a nonzero element [(a,b)] € Frac(R) is

[(0, a)].
Proof. Exercise. [

Definition. Frac(R) is called the Fraction Field of R.

Remark. Note that Frac(Z) = Q, if we identify a/b € Q, a, b € Z, with [(a, b)] €
Frac(Z).
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