
Week 8

Rings of polynomials
Definition. Let R be a nonzero commutative ring.

A polynomial with coefficients in R (in one-variable) is a formal sum

f(x) =
∞∑
i=0

aix
i

with ai ∈ R such that ai = 0 for all but finitely many i’s.

If ai �= 0 for some i, then the largest such i is called the degree of f(x),
denoted by deg f(x).

We denote by R[x] the set of all polynomials with coefficients in R.

Given

f(x) =
∞∑
i=0

aix
i, g(x) =

∞∑
i=0

bix
i ∈ R[x],

we define the addition and multiplication as follows (as usual):

f(x) + g(x) :=
∞∑
i=0

(ai + bi)x
i,

f(x)g(x) :=
∞∑
i=0

(
i∑

k=0

akbi−k

)
xi.

Proposition 8.0.1. With addition and multiplication thus defined, R[x] is a com-
mutative ring.

Proof. Exercise.

Remark. A polynomial f(x) defines a function f : R → R by a �→ f(a). But

f(x) may not be determined by f : R→ R. For example, the polynomials

f(x) = 1 + x+ x2, g(x) = 1 ∈ Z2[x]

define the same (constant) function from Z2 to itself.
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Integral domains and fields
Definition. A nonzero commutative ring R is called an integral domain if the

product of two nonzero elements is always nonzero.

Definition. A nonzero element r in a ring R is called a zero divisor if there exists

nonzero s ∈ R such that rs = 0.

So a nonzero commutative ring R is an integral domain if and only if it has no

zero divisors.

Example 8.0.2. 1. Z, Q, R, C are all integral domains, so are Z[x], Q[x], R[x],
C[x]. (More generally, if R is an integral domain, so is R[x].)

2. Since 2, 3 �≡ 0 mod 6, and 2 · 3 = 6 ≡ 0 mod 6, the ring Z6 is not an

integral domain.

3. Consider R = C[−1, 1], the ring of all continuous functions on [−1, 1],
equipped with the usual operations of addition and multiplication for func-

tions. Let:

f =

{
−x, x ≤ 0,

0, x > 0.
, g =

{
0, x ≤ 0,

x, x > 0.

Then f and g are nonzero elements of R, but fg = 0. So R is not an integral

domain.

Proposition 8.0.3. A commutative ring R is an integral domain if and only if the
cancellation law holds for multiplication, i.e. whenever ca = cb and c �= 0, we
have a = b.

Proof. Suppose R is an integral domain. If ca = cb, then by distributive laws,

c(a− b) = c(a+−b) = 0. Since R is an integral domain, we have either c = 0 or

a− b = 0. So, if c �= 0, we must have a = b.
Conversely, suppose cancellation law holds. Suppose there are nonzero a, b ∈

R such that ab = 0. By a previous result we know that 0 = a0. So, ab = a0,

which by the cancellation law implies that b = 0, a contradiction.

Definition. Let R be a ring. We say that an element a ∈ R is a unit if it has a

multiplicative inverse, i.e. there is an element a−1 ∈ R such that aa−1 = a−1a =
1.

Example 8.0.4. The only units of Z are ±1.

Example 8.0.5. Let R be the ring of all real valued functions on R. Then, any

function f ∈ R satisfying f(x) �= 0, ∀x, is a unit.
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Example 8.0.6. Let R be the ring of all continuous real valued functions on R,

then f ∈ R is a unit if and only if it is either strictly positive or strictly negative.

Proposition 8.0.7. The only units of Q[x] are nonzero constants.

Proof. Given any f ∈ Q[x] such that deg f > 0, for all nonzero g ∈ Q[x] we

have

deg fg ≥ deg f > 0 = deg 1;

hence, fg �= 1. If g = 0, then fg = 0 �= 1. So, f has no multiplicative inverse.

If f is a nonzero constant, then f−1 = 1
f

is a constant polynomial in Q[x], and

f
(

1
f

)
=
(

1
f

)
f = 1. So, f is a unit.

Finally, if f = 0, then fg = 0 �= 1 for all g ∈ Q[x], so the zero polynomial

has no multiplicative inverse.

Definition. A field is a commutative ring, with 1 �= 0, in which every nonzero

element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every

nonzero element r ∈ F has a multiplicative inverse r−1, i.e. rr−1 = r−1r = 1.

Example 8.0.8. 1. Q, R, C are fields, but Z is not a field.

2. The polynomial rings Q[x], R[x], C[x] are not fields.

Note that if every nonzero element of a commutative ring has a multiplicative

inverse, then that ring is an integral domain:

ca = cb =⇒ c−1ca = c−1cb =⇒ a = b.

So we conclude that

Proposition 8.0.9. A field is an integral domain.

Proposition 8.0.10. Let k ∈ Zm \ {0}.
• If gcd(k,m) > 1, then k is a zero divisor.

• If gcd(k,m) = 1, then k is a unit.

Proof. Let d := gcd(k,m).
If d > 1, then m/d is a nonzero element in Zm, and we have k ·m (m/d) =

(k/d) ·m = 0 in Zm. So k is a zero divisor.

If d = 1, then there exist a, b ∈ Z such that ak + bm = 1. But this means we

have ak = 1 in Zm. So k is a unit.
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Hence, the set of zero divisors in Zm is precisely given by

{k ∈ Zm \ {0} : gcd(k,m) > 1}
and the set of units in Zm is precisely given by

Z×m := {k ∈ Zm \ {0} : gcd(k,m) = 1}.
In particular, we have the following

Corollary 8.0.11. Zm is a field if and only if m is prime.

Notation. For p prime, we often denote the field Zp by Fp.

Proposition 8.0.12. Equipped with the usual operations of addition and multipli-
cations for real numbers, F = Q[

√
2] := {a+ b

√
2|a, b ∈ Q} is a field.

Proof. Observe that: (a+ b
√
2)+(c+d

√
2) = (a+ c)+ (b+d)

√
2 lies in F , and

(a+ b
√
2)(c+ d

√
2) = (ac+2bd)+ (ad+ bc)

√
2 ∈ F . Hence, addition and mul-

tiplication for real numbers are well-defined operations on F . As operations on

R, they are commutative, associative, and satisfy the distributive laws; therefore,

as F is a subset of R, they also satisfy these properties as operations on F .

It is clear that 0 and 1 are the additive and multiplicative identities of F . Given

a + b
√
2 ∈ F , where a, b ∈ Q, it is clear that its additive inverse −a − b

√
2 also

lies in F . Hence, F is a commutative ring.

To show that F is a field, for every nonzero a+ b
√
2 in F , we need to find its

multiplicative inverse. As an element of the field R, the multiplicative inverse of

a+ b
√
2 is:

(a+ b
√
2)−1 =

1

a+ b
√
2
.

It remains to show that this number lies in F . Observe that:

(a+ b
√
2)(a− b

√
2) = a2 − 2b2.

We claim that a2 − 2b2 �= 0. Suppose a2 − 2b2 = 0, then either (i) a = b = 0, or

(ii) b �= 0,
√
2 = |a/b|. Since we have assumed that a + b

√
2 is nonzero, case (i)

cannot hold. But case (ii) also cannot hold because
√
2 is know to be irrational.

Hence a2 − 2b2 �= 0, and:

1

a+ b
√
2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2,

which lies in F .

Proposition 8.0.13. All finite integral domains are fields.
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Proof. Let R be an integral domain with n elements, where n is finite. Write

R = {a1, a2, . . . , an}. We want to show that for any nonzero element a �= 0 in R,

there exists i, 1 ≤ i ≤ n, such that ai is the multiplicative inverse of a. Consider

the set S = {aa1, aa2, . . . , aan}. Since R is an integral domain, the cancellation

law holds. In particular, since a �= 0, we have aai = aaj if and only if i = j.

The set S is therefore a subset of R with n distinct elements, which implies that

S = R. In particular, 1 = aai for some i. This ai is the multiplicative inverse of

a.

Field of Fractions (optional)
An integral domain fails to be a field precisely when there is a nonzero element

with no multiplicative inverse. The ring Z is such an example, for 2 ∈ Z has no

multiplicative inverse. But any nonzero n ∈ Z has a multiplicative inverse 1
n

in Q,

which is a field. So, a question one could ask is, can we “enlarge” a given integral

domain to a field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with 1 �= 0). We consider the set:

R × R �=0 := {(a, b) : a, b ∈ R, b �= 0}. We define a relation ≡ on R × R �=0 as

follows:

(a, b) ≡ (c, d) if ad = bc.

Lemma 8.0.14. The relation ≡ is an equivalence relation.

In other words, the relation ≡ is:

Reflexive: (a, b) ≡ (a, b) for all (a, b) ∈ R×R

Symmetric: If (a, b) ≡ (c, d), then (c, d) ≡ (a, b).

Transitive: If (a, b) ≡ (c, d) and (c, d) ≡ (e, f), then (a, b) ≡ (e, f).

Proof. Exercise.

In general, given an equivalence relation ∼ on a set S, the equivalent class of

an element a ∈ S is the set of all elements in s ∈ S which are equivalent to a (i.e.

s ∼ a).

Notation: For notational convenience, to describe an equivalence class we

may pick any element s (called a representative) belonging to the class, and label

the class as [s]. Note that if s ∼ t, then [s] = [t].
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Due to the properties (reflexive, symmetric, transitive), of an equivalence re-

lation, the equivalent classes form a partition of S. Namely, equivalent classes of

non-equivalent elements are disjoint:

[s] ∩ [t] = ∅

if s �∼ t; and the union of all equivalent classes is equal to S:⋃
s∈S

[s] = S.

Definition. Given an equivalence relation ∼ on a set S, the quotient set S/ ∼ is

the set of all equivalence classes of S, with respect to ∼.

We now return to our specific situation of R × R �=0, with ≡ defined as above.

We define addition + and multiplication · on R×R �=0 as follows:

(a, b) + (c, d) := (ad+ bc, bd)

(a, b) · (c, d) := (ac, bd)

Proposition 8.0.15. Suppose (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′), then:

1. (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).

2. (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).
Proof. By definition, (a, b) + (c, d) = (ad + bc, bd), and (a′, b′) + (c′, d′) =
(a′d′ + b′c′, b′d′). Since by assumption ab′ = a′b and cd′ = c′d, we have:

(ad+ bc)b′d′ = adb′d′ + bcb′d′ = a′bdd′ + c′dbb′ = (a′d′ + b′c′)bd;

hence, (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).
For multiplication, by definition we have (a, b) · (c, d) = (ac, bd) and (a′, b′) ·

(c′, d′) = (a′c′, b′d′). Since

acb′d′ = ab′cd′ = a′bc′d = a′c′bd,

we have (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).
Let:

Frac(R) := (R×R �=0)/ ≡,
and define + and · on Frac(R) as follows:

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

[(a, b)] · [(c, d)] = [(ac, bd)]
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Corollary 8.0.16. + and · thus defined are well-defined binary operations on
Frac(R).

Namely, we get the same output in Frac(R) regardless of the choice of repre-

sentatives of the equivalence classes.

Proposition 8.0.17. The set Frac(R), equipped with + and · defined as above,
forms a field, with additive identity 0 = [(0, 1)] and multiplicative identity 1 =
[(1, 1)]. The multiplicative inverse of a nonzero element [(a, b)] ∈ Frac(R) is
[(b, a)].

Proof. Exercise.

Definition. Frac(R) is called the Fraction Field of R.

Remark. Note that Frac(Z) = Q, if we identify a/b ∈ Q, a, b ∈ Z, with [(a, b)] ∈
Frac(Z).
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